Feature Extraction with Supervised Projection Pursuit
نویسنده
چکیده
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملSupervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data
As the number of spectral bands of high spectral resolution data increases, the capability to detect more detailed classes should also increase, and the classification accuracy should increase as well. Often the number of labeled samples used for supervised classification techniques is limited, thus limiting the precision with which class characteristics can be estimated. As the number of spect...
متن کاملمدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...
متن کاملOptimized local discriminant basis algorithm
Local discriminant bases method is a powerful algorithmic framework for feature extraction and classification applications that is based on supervised training. It is considerably faster compared to more theoretically ideal feature extraction methods such as principal component analysis or projection pursuit. In this paper an optimization block is added to original local discriminant bases algo...
متن کامل